Performs a union and sorting of addend and augend row and column names prior to summation.
Zeroes are inserted for missing matrix elements.
Treats missing or NULL
operands as 0
.
Details
For this function, a list of lists of operands is ambiguous.
Should the operands be summed across lists
(first items summed across all lists, second items summed across all list, etc.)
or should each list be summed along each list?
In the first case, the return object will have length equal to the length of the lists in the ...
argument.
In the second case, the return object will have length equal to the number of lists in the ...
argument.
The first case is like summing across rows of a data frame.
The second case is like summing down columns of a data frame.
The summarise
argument distinguishes between these two cases.
The default value for summarise
is FALSE
, giving the first behavior.
Set summarise
to TRUE
to cause this function to act like dplyr::summarise()
for its list of arguments.
If .summarise = TRUE
, the
data value is guaranteed to be a list.
If the call to sum_byname(.summarise = TRUE)
is made in the context of a data frame,
the column returned is guaranteed to be a list column.
See the aggregation vignette for additional details and examples.
Examples
library(dplyr)
sum_byname(2, 2)
#> [1] 4
sum_byname(2, 2, 2)
#> [1] 6
sum_byname(2, 2, -2, -2)
#> [1] 0
productnames <- c("p1", "p2")
industrynames <- c("i1", "i2")
U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%
setrowtype("Products") %>% setcoltype("Industries")
Y <- matrix(1:4, ncol = 2, dimnames = list(rev(productnames), rev(industrynames))) %>%
setrowtype("Products") %>% setcoltype("Industries")
sum_byname(U, 100)
#> i1 i2
#> p1 101 103
#> p2 102 104
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
sum_byname(200, Y)
#> i1 i2
#> p1 204 202
#> p2 203 201
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
U + Y # Non-sensical. Row and column names not respected.
#> i1 i2
#> p1 2 6
#> p2 4 8
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
sum_byname(U, U)
#> i1 i2
#> p1 2 6
#> p2 4 8
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
sum_byname(U, Y)
#> i1 i2
#> p1 5 5
#> p2 5 5
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
sum_byname(U, U, Y, Y)
#> i1 i2
#> p1 10 10
#> p2 10 10
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
V <- matrix(1:4, ncol = 2, dimnames = list(industrynames, productnames)) %>%
setrowtype("Industries") %>% setcoltype("Products")
U + V # row and column names are non-sensical and blindly taken from first argument (U)
#> i1 i2
#> p1 2 6
#> p2 4 8
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
if (FALSE) sum_byname(U, V) # \dontrun{} # Fails, because row and column types are different
# This also works with lists
sum_byname(list(U,U), list(Y,Y))
#> [[1]]
#> i1 i2
#> p1 5 5
#> p2 5 5
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
#>
#> [[2]]
#> i1 i2
#> p1 5 5
#> p2 5 5
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
#>
sum_byname(list(U,U), list(100,100))
#> [[1]]
#> i1 i2
#> p1 101 103
#> p2 102 104
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
#>
#> [[2]]
#> i1 i2
#> p1 101 103
#> p2 102 104
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
#>
sum_byname(list(U,U), as.list(rep_len(100, 2)))
#> [[1]]
#> i1 i2
#> p1 101 103
#> p2 102 104
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
#>
#> [[2]]
#> i1 i2
#> p1 101 103
#> p2 102 104
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
#>
DF <- data.frame(U = I(list()), Y = I(list()))
DF[[1,"U"]] <- U
DF[[2,"U"]] <- U
DF[[1,"Y"]] <- Y
DF[[2,"Y"]] <- Y
sum_byname(DF$U, DF$Y)
#> [[1]]
#> i1 i2
#> p1 5 5
#> p2 5 5
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
#>
#> [[2]]
#> i1 i2
#> p1 5 5
#> p2 5 5
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
#>
DF %>% mutate(sums = sum_byname(U, Y))
#> U Y sums
#> 1 1, 2, 3, 4 1, 2, 3, 4 5, 5, 5, 5
#> 2 1, 2, 3, 4 1, 2, 3, 4 5, 5, 5, 5
sum_byname(U) # If only one argument, return it.
#> i1 i2
#> p1 1 3
#> p2 2 4
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
sum_byname(2, NULL) # Gives 2
#> [1] 2
sum_byname(2, NA) # Gives NA
#> [1] NA
sum_byname(NULL, 1) # Gives 1
#> [1] 1
sum_byname(list(NULL, 1), list(1, 1))
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 2
#>
DF2 <- data.frame(U = I(list()), Y = I(list()))
DF2[[1,"U"]] <- NULL
DF2[[2,"U"]] <- U
DF2[[1,"Y"]] <- Y
DF2[[2,"Y"]] <- Y
sum_byname(DF2$U, DF2$Y)
#> [[1]]
#> i1 i2
#> p1 4 2
#> p2 3 1
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
#>
#> [[2]]
#> i1 i2
#> p1 5 5
#> p2 5 5
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
#>
DF3 <- DF2 %>% mutate(sums = sum_byname(U, Y))
DF3
#> U Y sums
#> 1 1, 2, 3, 4 4, 3, 2, 1
#> 2 1, 2, 3, 4 1, 2, 3, 4 5, 5, 5, 5
DF3$sums[[1]]
#> i1 i2
#> p1 4 2
#> p2 3 1
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"
DF3$sums[[2]]
#> i1 i2
#> p1 5 5
#> p2 5 5
#> attr(,"rowtype")
#> [1] "Products"
#> attr(,"coltype")
#> [1] "Industries"