Skip to contents

Any tidy data frame of matrices (in which each row represents one matrix observation) can also be represented as a tidy data frame with each non-zero matrix entry as an observation on its own row. This function (and collapse_to_matrices()) convert between the two representations.

Usage

expand_to_tidy(
  .DF,
  matnames = "matnames",
  matvals = "matvals",
  rownames = "rownames",
  colnames = "colnames",
  rowtypes = "rowtypes",
  coltypes = "coltypes",
  drop = NA
)

Arguments

.DF

The data frame containing matsindf-style matrices. (.DF may also be a named list of matrices, in which case names of the matrices are taken from the names of items in the list and list items are expected to be matrices.)

matnames

The name of the column in .DF containing matrix names (a string). Default is "matnames".

matvals

The name of the column in .DF containing IO-style matrices or constants (a string), This will also be the name of the column containing matrix entries in the output data frame. Default is "matvals".

rownames

The name for the output column of row names (a string). Default is "rownames".

colnames

The name for the output column of column names (a string). Default is "colnames".

rowtypes

An optional name for the output column of row types (a string). Default is "rowtypes".

coltypes

The optional name for the output column of column types (a string) Default is "coltypes".

drop

If specified, the value to be dropped from output, For example, drop = 0 will cause 0 entries in the matrices to be deleted from output. If NA, no values are dropped from output. Default is NA.

Value

A tidy data frame containing expanded matsindf-style matrices

Details

Names for output columns are specified in the rownames, colnames, rowtypes, and coltypes, arguments. The entries of the matsindf-style matrices are stored in an output column named values.

Examples

library(dplyr)
library(matsbyname)
ptype <- "Products"
itype <- "Industries"
tidy <- data.frame(Country  = c( "GH",  "GH",  "GH",  "GH",  "GH",  "GH",  "GH",
                                 "US",  "US",  "US",  "US", "GH", "US"),
                  Year      = c( 1971,  1971,  1971,  1971,  1971,  1971,  1971,
                                 1980,  1980,  1980,  1980, 1971, 1980),
                  matrix    = c(  "U",   "U",   "Y",   "Y",   "Y",   "V",   "V",
                                  "U",   "U",   "Y",   "Y", "eta", "eta"),
                  row       = c(  "c1",  "c2",  "c1",  "c2",  "c2",  "i1",  "i2",
                                  "c1",  "c1",  "c1",  "c2", NA, NA),
                  col       = c(  "i1",  "i2",  "i1",  "i2",  "i3",  "c1",  "c2",
                                  "i1",  "i2",  "i1",  "i2", NA, NA),
                  rowtypes  = c( ptype, ptype, ptype, ptype, ptype, itype, itype,
                                 ptype, ptype, ptype, ptype, NA, NA),
                  coltypes  = c(itype, itype, itype, itype, itype, ptype, ptype,
                                itype, itype, itype, itype, NA, NA),
                  vals      = c(11  ,  22,    11 ,   22 ,   23 ,   11 ,   22 ,
                                11 ,   12 ,   11 ,   22,   0.2, 0.3)) %>%
  group_by(Country, Year, matrix)
mats <- collapse_to_matrices(tidy, matnames = "matrix", rownames = "row", colnames = "col",
                             rowtypes = "rowtypes", coltypes = "coltypes",
                             matvals = "vals") %>%
  ungroup()
expand_to_tidy(mats, matnames = "matrix", matvals = "vals",
                     rownames = "rows", colnames = "cols",
                     rowtypes = "rt",   coltypes = "ct")
#> # A tibble: 22 × 8
#>    Country  Year matrix rows  cols   vals rt         ct        
#>    <chr>   <dbl> <chr>  <chr> <chr> <dbl> <chr>      <chr>     
#>  1 GH       1971 U      c1    i1       11 Products   Industries
#>  2 GH       1971 U      c2    i1        0 Products   Industries
#>  3 GH       1971 U      c1    i2        0 Products   Industries
#>  4 GH       1971 U      c2    i2       22 Products   Industries
#>  5 GH       1971 V      i1    c1       11 Industries Products  
#>  6 GH       1971 V      i2    c1        0 Industries Products  
#>  7 GH       1971 V      i1    c2        0 Industries Products  
#>  8 GH       1971 V      i2    c2       22 Industries Products  
#>  9 GH       1971 Y      c1    i1       11 Products   Industries
#> 10 GH       1971 Y      c2    i1        0 Products   Industries
#> # ℹ 12 more rows
expand_to_tidy(mats, matnames = "matrix", matvals = "vals",
                     rownames = "rows", colnames = "cols",
                     rowtypes = "rt",   coltypes = "ct", drop = 0)
#> # A tibble: 13 × 8
#>    Country  Year matrix rows  cols   vals rt         ct        
#>    <chr>   <dbl> <chr>  <chr> <chr> <dbl> <chr>      <chr>     
#>  1 GH       1971 U      c1    i1     11   Products   Industries
#>  2 GH       1971 U      c2    i2     22   Products   Industries
#>  3 GH       1971 V      i1    c1     11   Industries Products  
#>  4 GH       1971 V      i2    c2     22   Industries Products  
#>  5 GH       1971 Y      c1    i1     11   Products   Industries
#>  6 GH       1971 Y      c2    i2     22   Products   Industries
#>  7 GH       1971 Y      c2    i3     23   Products   Industries
#>  8 GH       1971 eta    NA    NA      0.2 NA         NA        
#>  9 US       1980 U      c1    i1     11   Products   Industries
#> 10 US       1980 U      c1    i2     12   Products   Industries
#> 11 US       1980 Y      c1    i1     11   Products   Industries
#> 12 US       1980 Y      c2    i2     22   Products   Industries
#> 13 US       1980 eta    NA    NA      0.3 NA         NA