A sensitivity graph containing all rebound terms
rebound_terms_graph.Rd
Create a sensitivity graph with lines for all rebound terms.
Usage
rebound_terms_graph(
.parametric_data = parametric_analysis(rebound_data, parameterization),
rebound_data,
parameterization,
x_var,
Re_terms = unlist(ReboundTools::rebound_terms),
line_var = y_names_col,
y_names_col = ReboundTools::graph_df_colnames$y_names_col,
y_vals_col = ReboundTools::graph_df_colnames$y_vals_col,
graph_params = ReboundTools::sens_graph_params,
point_type_colname = ReboundTools::parametric_analysis_point_types$point_type_colname,
sweep_points = ReboundTools::parametric_analysis_point_types$sweep,
orig_points = ReboundTools::parametric_analysis_point_types$orig
)
Arguments
- .parametric_data
A data frame, likely the result of calling
parametric_analysis()
. Default isparametric_analysis(rebound_data, parameterization)
.- rebound_data
Rebound data, likely read by
load_eeu_data()
. Default isNULL
.- parameterization
A list of lists that gives parameter sweeps. At the top level, the list items must be named for cases in
rebound_data
. At the next level, the parameters to be swept should be given, along with their sweep values. See examples. Default isNULL
.- x_var
Strings that identify the x-axis and y-axis variables for this sensitivity graph. These variables must appear in
.parametric_data
.x_var
must be a single string.y_var
can be a vector of strings. See examples.- Re_terms
A string vector that tells which rebound terms to include in the graph. Default is
unlist(ReboundTools::rebound_terms)
.- line_var
The name of variable to be used to discriminate lines on the graph. Default is
y_names_col
.- y_names_col, y_vals_col
- graph_params
A list of parameters to control graph appearance. See
ReboundTools::sens_graph_params
.- point_type_colname, sweep_points, orig_points
Details
This function has the same arguments as sensitivity_graphs()
,
except that yvar
is missing.
y_var
is missing, because the ordinate is assumed to be rebound values,
and all rebound components are included.
Examples
df <- load_eeu_data()
sens_params <- list(Car = list(eta_engr_units_star = seq(35, 50, by = 0.5)),
Lamp = list(eta_engr_units_star = seq(70, 90, by = 5)))
rebound_terms_graph(rebound_data = df, parameterization = sens_params,
x_var = "eta_engr_units_tilde") +
ggplot2::facet_wrap(facets = "Case", scales = "free_x")
#> Warning: Removed 114 rows containing missing values or values outside the scale range
#> (`geom_path()`).