Skip to contents

Create a sensitivity graph with lines for all rebound terms.

Usage

rebound_terms_graph(
  .parametric_data = parametric_analysis(rebound_data, parameterization),
  rebound_data,
  parameterization,
  x_var,
  Re_terms = unlist(ReboundTools::rebound_terms),
  line_var = y_names_col,
  y_names_col = ReboundTools::graph_df_colnames$y_names_col,
  y_vals_col = ReboundTools::graph_df_colnames$y_vals_col,
  graph_params = ReboundTools::sens_graph_params,
  point_type_colname = ReboundTools::parametric_analysis_point_types$point_type_colname,
  sweep_points = ReboundTools::parametric_analysis_point_types$sweep,
  orig_points = ReboundTools::parametric_analysis_point_types$orig
)

Arguments

.parametric_data

A data frame, likely the result of calling parametric_analysis(). Default is parametric_analysis(rebound_data, parameterization).

rebound_data

Rebound data, likely read by load_eeu_data(). Default is NULL.

parameterization

A list of lists that gives parameter sweeps. At the top level, the list items must be named for cases in rebound_data. At the next level, the parameters to be swept should be given, along with their sweep values. See examples. Default is NULL.

x_var

Strings that identify the x-axis and y-axis variables for this sensitivity graph. These variables must appear in .parametric_data. x_var must be a single string. y_var can be a vector of strings. See examples.

Re_terms

A string vector that tells which rebound terms to include in the graph. Default is unlist(ReboundTools::rebound_terms).

line_var

The name of variable to be used to discriminate lines on the graph. Default is y_names_col.

y_names_col, y_vals_col

See ReboundTools::graph_df_colnames.

graph_params

A list of parameters to control graph appearance. See ReboundTools::sens_graph_params.

point_type_colname, sweep_points, orig_points

See ReboundTools::parametric_analysis_point_types.

Value

A ggplot2 graph showing sensitivity of all rebound terms to x_var.

Details

This function has the same arguments as sensitivity_graphs(), except that yvar is missing. y_var is missing, because the ordinate is assumed to be rebound values, and all rebound components are included.

Examples

df <- load_eeu_data()
sens_params <- list(Car = list(eta_engr_units_star = seq(35, 50, by = 0.5)), 
                    Lamp = list(eta_engr_units_star = seq(70, 90, by = 5)))
rebound_terms_graph(rebound_data = df, parameterization = sens_params, 
                    x_var = "eta_engr_units_tilde") +
  ggplot2::facet_wrap(facets = "Case", scales = "free_x")
#> Warning: Removed 114 rows containing missing values or values outside the scale range
#> (`geom_path()`).